// The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle
number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
// 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
// Let us list the factors of the first seven triangle numbers:
// 1: 1
// 3: 1, 3
// 6: 1, 2, 3, 6
// 10: 1, 2, 5, 10
// 15: 1, 3, 5, 15
// 21: 1, 3, 7, 21
// 28: 1, 2, 4, 7, 14, 28
// We can see that 28 is the first triangle number to have over five divisors.
// What is the value of the first triangle number to have over n divisors?
function divisibleTriangleNumber(n) {
// Good luck!
return true;
}
divisibleTriangleNumber(5); // 28
// divisibleTriangleNumber(10); // 120
// divisibleTriangleNumber(23); // 630
// divisibleTriangleNumber(167); // 1385280
// divisibleTriangleNumber(374); // 17907120
// divisibleTriangleNumber(500); // 76576500
//
https://www.freecodecamp.rocks/learn/coding-interview-prep/project-euler/problem-12-highly-divisible
-triangular-number